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1. Introduction

The Earth Radiation Budget Experiment (ERBE)

included non-scanning radiometers (Luther, 1986)
flown aboard a dedicated mission of Earth Radiation

Budget Satellite, and the NOAA-9 and -10 opera-

tional meteorological spacecraft (Barkstrom and

Smith, 1986). The radiometers first began providing
Earth radiation budget data in November 1984 and

have remained operational, providing a record of
nearly 8 years of data to date for researchers.

Although they do not produce measurements with the
resolution given by the scanning radiometers, the

results from the non-scanning radiometers are

extremely useful for climate research involving long-

term radiation data sets. This paper discusses the non-

scanning radiometers, their stability, the method of

analyzing the data, and brief scientific results from the
data.

2. Description of Instruments

The non-scanning package, shown in Fig. l, con-

sists of a pair of wide field-of-view (WFOV) radiome-

ters, a pair of medium field-of-view (MFOV)
radiometers, all of which were Earth-viewing, and a

solar monitor. Each of these is an active cavity radi-

ometer. Each pair of Earth-viewing channels has a
total channel and a shortwave channel. The WFOV
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Figure 1. Non-scanning radiometer instrument.

channels view the Earth from one limb to the other.

The MFOV channels each have an aperture which

restricted its FOV to a circle with a 10 ° great circle

diameter. Figure 2 shows the sensor design for the
WFOV shortwave channel. In order to maintain the

accuracy of their calibration while in orbit, the Earth-

viewing channels are mounted on a beam which could
rotate so that the instruments can look at internal

blackbodies or through viewing ports at the Sun, as a
high intensity well-known source, and at space for a

near-zero radiance source. Thomas et al. (1992) have

shown that the non-scanning radiometers have been
quite stable, the shortwave channels having a gradual

degradation which can be accounted for to a fraction

of a percent by use of the on-board calibration system.

Figure 3 shows the change with time in mean outgo-
ing radiative flux at the top of the atmosphere (TOA)

averaged over the portion of the Earth which is

observed by the I_OV and WFOV non-scanning

radiometers and the scanning radiometer. It is seen
that with degradation accounted for by use of the on-

board calibration systems, the change is on the order
of 1 W/m 2.
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Figure 2. Wide field-of-View shortwave

channel.

ERBE scanning and non-scanning radiometer

packages were placed aboard three spacecraft. In
October 1984, the Earth Radiation Budget Satellite
was launched into an orbit with an inclination of 57 °



and an altitude of 610 krn, so that it precesses around
the Equator every 72 days. The NOAA-9 operational

spacecraft was placed into a near-polar (99 ° inclina-
tion) Sun-synchronous orbit with an altitude of 812
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Figure 3. 12 months running mean at top of atmo-

sphere for outgoing longwave radiation for ERBS.

ien and an Equator crossing ume of 1430 hours

(ascending node). The NOAA-10 operational space-
craft was launched in October 1986 into a similar

orbit (830-kin altitude and 990 inclination) except for

the Equator crossing time of 0730 hours. All three
sets of non-scanning radiometers have operated con-

tinuously. At the time of this writing, all three space-

craft are operating well.

Figure 4 shows the availability of radiation mea-

surements over the years. ERBE was proceeded by
the Nimbus 6 and 7 ERB WFOV radiometers, which

gave a low-resolution data record from ]975 through
1987 (Kyle et al., 1985), so that a i 7-year record of

low-resolution radiation data is available at present

for studies, e.g., of interannual variations. The Clouds
and Earth Radiant Energy System (CERES) aboard

the Tropical Rainfall Measurement Mission (TRMM)
is scheduled to begin providing scanning radiometer
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Figure 4.
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Time line of Earth radiation budget mea-
surements.

data in 1997 over the Tropics, and the CERES aboard

the first EOS platform should begin operation in 1998.
In the meantime, the Franco-German-Russian SCAn-

ning RAdiation Budget (SCARAB) radiometer (Kan-
del et al., 1992) is scheduled to fly aboard a Russian

METEOR spacecraft in 1993 to flu the scanning-radi-
ometer gap. However, most of the long-term radia-

tion data record is from non-scanning radiometers.

3. Earth Viewing Data Analysis

The measurement equation for the non-scanning
radiometers is

m(rs) = _ Lcosadfl
F V

where m (r) is the measurement at the spacecrafts
position r , L (r s, v) is the radiance at the space-s
craft from all directions within the FOV, tx _s the

nadir angle of the incoming radiance, and dfl is the

differential solid angle. For the W'FOV radiometers,
the FOV is the entire Earth scene, from limb to limb.

For the MFOV radiometers, the FOV is limited by an

aperture to a circle with a I 0° diameter great circle arc

at the "IDA. The Iongwave measurement is the total
radiometer measurement minus the shortwave radi-

ometer measurement. The radiance is related to the

flux M(r) at TOA by the bidirectional reflectance

function for shortwave and the limb-darkening func-

tion for longwave. These functions vary with the

scene type and view angles and are denoted here as
R(r,u), where u denotes the unit vector from r to h.

The measurement equation can thus be written as

m(rs) =n-1 f M(r) R(r,u)cosotdt"i
F O V

For the shortwave case, the TOA flux is given in

terms ofalbedo a (r) , so that the measurement

equation for the shortwave case becomes

ms(rs) = n-lSF_Va(r)R(r'u)C°SqC°sadf'

where S is the solar oulput, i.e., the total solar irradi-

ance normalized to mean Earth-Sun distance, q is the



solarzenith angle at r, and the integration is over the

sunlit FOV. The data analysis problem is to compute
M(r) from m (r°) for thelongwave caseand a (r)

for the shortwav_ case. For ERBE, the Earth viewing

non.scanning radiometer data have been analyzed
using two methods: shape factor and numerical filter.

3.1 Shape Factor Method:

The shape factor method assumes that M(r) is con-

stant over the FOV for the longwave case and that
a (r) is constant for the shortwave case. For the

longwave case, the measurement equation simplifies
to

m L(r s) = SFLM(rs)

= n-IM (rs) _ R (r, u) cosctdf2
F V

and for the shortwave case the measurement equation
becomes

m s(r s) = SFsa(r s)

= n-ISa (rs) I R (r, u) cosqcosadxq
FOV

where SF L and SF s are the longwave and shortwave
shape factors. For the WFOV, if R (r, u) is inde-

pendent of location, the longwave shape factor is the

inverse of the square of the ratio of the orbit radius to

the Earth's radius. During the period of time for

which the scanning radiometers operated, scene iden-
tification data from the scanning radiometers

(Wielicki and Green, 1989) were used to determine

the appropriate R (r, u) for computation of the

shape factors. The longwave shape factor computed
in this manner varied by only .25%, so the longwave

shape factors were taken to be constants for data pro-

cessing.

Studies were conducted by Green and Smith

(1991) in which scenes of various types but constant
over the FOV were assumed for the computation of

the shortwave shape factors. Shape factors computed

using the bidirectional reflectance function for mostly
cloudy scene over ocean were found to produce short-

wave fluxes at TOA that agreed with .scanning radi-
ometer results with a bias less than 1 W/rn 2 and with

standard deviations comparable to those obtained

with the scene-dependent shape factor. This result is
reasonable since the Earth's surface is three fourth

ocean and since clouds do most of the reflecting on a

global-wide basis. Non-scanning radiometer results
have thus been processed in this manner after the ces-

sation of the scanning radiometer on each spacecraft.

The difference between the monthly mean shortwave
maps (at 10%!0 ° resolution) using the mostly-

cloudy-over-ocean scene identification rather than the
full scene identification algorithm is less than 1 W/m 2

for most of the globe, with a'few regions for which the
difference is 1 to 2 W/m2; there are three regions in

which the difference is 4 W/m 2 for the medium FOV
radiometers. The WFOV results are less sensitive. A

study by Green (1983) showed that the resolution of a
WFOV radiometer at an altitude of 820 km corre-

sponds to a circle with a radius of 4o. Extensive vali-

dation studies were conducted for the scanning and

non-scanning radiometers by Green et at. (1990).

3.2 Numerical Filler Method:

The numerical filter method is a one-dimensional

resolution enhancement technique conceived by

House and Jafolla (1980) as an improvement over the

inherently low resolution of the shape factor

approach. This approach treats the measurement

equation as an integral equation to be solved for M(r)
and a (r) . Because data are only available along the

orbit track for periods of less than one orbit and no
data are available in the cross track direction, the

equations are considered to be one- dimensional and
the solutions for M(r) and a (r) are expressed as

integrals over the orbit track. These integrals are dis-

cretized and stabilized, thereby producing the numeri-
cal fihcrs, which are written in the form

N

Mj = E _imj+i
i=-N

Here, Mj is the retrieved instantaneous flux at TOA,
mi, j are the measurements and the m. are filter
weights. For ERBE, N = 6. 'measurements are



taken to be 32-second averages of the radiometer out-
put, which is sampled every 0.8 seconds. The effects

of bidirectional reflectance function dependence on
scene identification for these filters woe studied as

for the shape factor case, with similar results. The

instantaneous TOA longwave fluxes and albedos from
the shape factor and numerical filter analyses are

azchived for scientific investigations on magnetic

tapes, denoted as S-7 data products.

4. Monthly MeanMaps

The TOA fluxes and albedo values obtained by

each technique are compiled for each calender month,
and the monthly mean outgoing longwave radiation

and albcdo are computed over the Earth, as described
by Brooks et al. (1986), with modifications which

were developed as a result of extensive validation
investigations. The resulting monthly mean maps of
absorbed solar radiation, based on these albedos, have

been compared with scanning radiometer results by
Rutan and Smith (1991). Rutan and Smith (1991)

found that the accuracy of the monthly mean map

could be improved by reconstructing the map with

only the lowest 12 Fourier waves in longitude, This
result is due to the sampling pattern in space and time

for a non-scanning radiometer, which causes the

major error source for a monthly map to be time vari-
ations rather than the lack of resolution. The sam-

pling problem for a wide FOV radiometer has been
studied by Salby (1988a and b)o The radiation field

for a day has a number of short-range transient fea-

tures, whereas the monthly mean radiation field of the

Earth is fairly smooth. Moreover, these transients

move primarily in a west-cast or east-west direction,
so that longitudinal variations tend to be small (there

are obvious exceptions in the major Equatorial con-
vective regions and near coastlines). The RMS
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Figure 5. Zonal comparison of shortwave zonal

averages.

accm'acy of the non-scanner results vary with Sun-
scene-satellite geometry for shortwave radiation, and

its variation with latitude is shown in Fig. 5. Globally,
with the Fourier filter eliminating longitudinal wave-
numbers higher than 11, the RMS deviation of the

numerical filter results from the scanninj_ radiometer
results at 5°x5 ° resolution was 9.6 W/re'= and the
RMS deviation of the zonal means was 3.5 W/m 2.

The algorithm far the monthly mean maps has been
modified and now places the derived fluxes not only

in the 5°x5 a grid-box containing the subsatellite point,

but also in the adjacent grid-boxes in the crosstrack
direction. These monthly maps are archived on mag-

netic tapes as S-10 data products.

5. Solar Output Measurements

The ERBE solar monitors have been shown to have
an accuracy of 0.2%, with a precision better than
0.02% (Lee et al., 1991). Figure 6 shows the solar

irTadiance decreasing from 1984, when ERBE began

producing data, until 1986, which was the minimum

sunspot number and solar magnetic activity for sun-
spot cycle number 2 I. There was an increasing trend

in solar irradiance from 1986 through 1989, when the

maximum magnetic activity and sunspot numbers
occurred for sunspot cycle number 22. The variation

of solar irradiance over the measurement period is
0.1%.
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Figure 6. Solar irradiance based on ERBS
solar monitor.

5. Conclusions

The ERBE non-scanning radiometers have pro-
vided a 7-year record of Earth radiation and solar out-

put measurements thus far. The response of these

radiometers are very stable. The monthly mean maps
which are produced from the data have been shown to

agree with the scanning radiometer results to 9.6 W/
m 2 for 5°x5 ° resolution and to 3.5 W/m 2 for zonal



means.Thetime period of this record includes two
ENSO events and a volcano to date. Measurements

of solar output cover much of one solar cycle and

agree very well with other measurements.

6. Data Availability

The scientific data products for the non-scanning

radiometers, which are designated S-2, S-7 and S-10,
are available from the National Space Science Data

Center at the Goddard Space Flight Center of NASA,

Greenbelt, Maryland, 20771.
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